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Abstract 

When a double rf system is subjected to sinusoidal phase modulation, the 

P&c& surfaces of section display a rich spectrum of resonance islands. Sta- 

ble and unstable fixed points of these resonance islands form a tree of bifurca- 

tion branches, which can be explained as parametric resonances generated by 

external phase modulation. A semi-analytic determination of the condition 

for the bifurcation of fixed points is presented for an autonomous Hamiltonian 

of one degree of freedom with sinusoidal time dependent perturbation. 
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For low energy synchrotrons, a charged particle in a bunched beam may encounter enor- 

mous electromagnetic forces. The effects of the space charge force are manifested as trans- 

verse incoherent and coherent tune shifts, longitudinal impedance and potential well distor- 

tions etc. The beam intensities in booster synchrotrons at Fermilab, Brookhaven National 

Laboratory and CERN are known to be limited by the incoherent space charge tune shift 

PI. 
To improve beam intensity for the CERN low energy boosters, two rf cavities operating 

at harmonics 5 and 10 have been used to flatten out the longitudinal bunch shape. This 

improves the beam intensity by about 25-30% [z]. H owever, the system exhibited coherent 

sextupole and decapole synchrotron mode instabilities [3]. Microwave instabilities can result 

from insufficient Landau damping due to a small local synchrotron tune spread [4]. But, 

since the observed instabilities were found to be independent of the beam intensity, they 

might arise from single particle dynamics associated with intrinsic time dependent noise in 

the accelerator. 

Recently a new class of low energy synchrotrons with electron cooling and/or stochastic 

cooling have been constructed for research in nuclear and atomic physics [5]. These cooler 

rings also encounter an insurmountable space charge problem related to the high charge 

density attained by electron cooling. The beam intensity of these cooler rings has been 

found to be operating at the boundary of longitudinal and transverse stabilities [6]. To 

achieve the high intensity needed for nuclear and atomic physics experiments, it is a logical 

step to employ a double rf system in order to stretch out the longitudinal profile. In our first 

experiment with a double rf system at the Indiana University Cyclotron Facility cooler ring, 

the bunched beam intensity was found to increase by about a factor of 4 in comparison with 

that achieved in operating only the main rf cavity at an identical rf voltage. If the bunched 

beam were limited by the space charge tune shift, the peak current (or peak line density) 

would be proportional to the transverse beam emittance. If the bunched beam current were 

limited by the microwave instability, the peak current would be proportional to the square 

of the beam momentum spread. Therefore, increasing the bunching factor, which is defined 
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as the fraction of the circumference occupied by the beam, can effectively increase the beam 

intensity. 

The double rf system is generally important for many synchrotrons which require bunched 

beam manipulation. Furthermore there have been recent studies on stochastic cooling with 

two rf systems [g]. These studies were based on a first order perturbation expansion of the 

double rf potential, where an analytic solution is available. However, the synchrotron tune 

obtained from the first order perturbation theory is not reliable for phase amplitudes beyond 

about 1 rad. Thus further studies of the beam dynamics associated with a double rf system 

are needed. 

For an ideal synchronous particle orbiting in a circular accelerator at the angular rev- 

olution frequency wa, the rf accelerating field is operating at a harmonic of the revolution 

frequency. The ratio of the rf frequency to the revolution frequency is called the har- 

monic number h. For a non-synchronous particle with small momentum deviation, the 

rf sinusoidal field also provides a focusing force. Thus non-synchronous particles are ex- 

ecuting synchrotron oscillations about the synchronous particle at a frequency called the 

synchmtrwn frequency. The number of synchrotron oscillations in one orbital revolution is 

called the synehmtron tune Q,. 

For a double rf system, let hl, hz be harmonic numbers, VI, V, be voltages of the primary 

and the secondary rf cavities respectively. We consider the stationary state case so that 

the synchronous particle does not gain or lose energy in either cavity. Let V, be the small 

amplitude synchrotron tune of the primary rf system, i.e. V, = (ggy, where PC and 

E are respectively the speed and the total energy of the particle, and n is the phase slip 

factor. Hamilton’s equations for single particle synchrotron motion are 

4 = v,6, 6 = -y,(sin 4 - r sin hd). 

Here the dots are derivatives with respect to the orbiting angle 8, which serves as the 

time coordinate, (~~5~6) are the normalized conjugate phase space variables referenced to the 

primary rf system with 6 = %$ as the normalized off momentum variable, h = 2 is the 
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ratio of the harmonic numbers, and T = 2 is the ratio of rf voltages. The corresponding 

Hamiltonian is Ho = iu,S’ + V(4) with V(d) = V, [(l - cos 4) - i(l - cos h4)] . Although 

the method we use can be applied for arbitrary P and h, we consider only the case T = 2 

with h = 3 for simplicity. 

The action is given by 

and the phase space area of a given torus is 2xJ. Since the Hamiltonian is autonomous, 

a torus corresponds to a constant “energy”, i.e. Ho = E, which, for a stable orbit (0 5 

5 I y,, can be fitted numerically with the following expression, 5 = AJ’j3(1 - QJ’/~ + 

a2 J’13 - a3J1) (J 5 2.280), where the parameter A = [$$I”” is obtained from the first 

order perturbation expansion in the potential, i.e. V cz $I$‘, with the complete elliptical 

function of first kind K = K(i) = 1.85407. Applying the Bogoliubov averaging method [ll] 

to the double rf potential, V(4), one obtains al = 0.1762 and az = 0.0424. Since the rate 

of convergence in the E vs J expansion is very slow for a large J, the truncated as term is 

fitted to the numerical solution of Eq. (3) in order to duplicate the characteristic behavior 

of the synchrotron tune Q, = $$. This results in as cz 0.039. Figure 2 shows Q./v, and 

its rational multiples as a function of the action. The derivative of the synchrotron tune 

with respect to the action becomes zero at J zz 1 rad’, where Landau damping, an essential 

mechanism for beam stability, also disappears. 

To study the particle beam stability, we apply a small perturbation to the system and 

measure the response of the particle motion. We consider here a small perturbation produced 

by external phase modulation, where the equation for the phase 4 is replaced by, 4 = 

~,6 + +,,a cos I+,,@. Here V, and a are respectively the modulation tune and the modulation 

amplitude. Such an external modulation may arise from synchro-betatron coupling, rf noise, 

or a wake field resulting from longitudinal impedances, etc. The corresponding Hamiltonian 

becomes, 

H = Ho $ v,abcos v,e. 
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In the limit of small perturbation, i.e. a << 1, the solution can be expanded in terms 

of the action-angle of the unperturbed Hamiltonian Ho. Using the generating function 

Fs(d,J) = ~~b(#)d&‘, where 4 is an extremum of the phase angle for a given torus, the 

angle variable is then given by 11, = s = $$ $ $&‘. 

Now the task is to express the perturbation in terms of the action-angle of the unper- 

turbed Hamiltonian, i.e. 6 = x,g,,(J)e w [13]. Here the expansion amplitude gn(J) can be 

obtained from the inverse Fourier transform as, 

g,,(J) = & /_:6emiddJ,, (3) 

which can be evaluated and parameterized in terms of J. Since V(d) is an even function, II, 

varies from -x to rr for a given torus, and 6 is an odd function of 11, with reflective symmetry 

about the li axis in the (1$,6) phase space, the integral of Eq. (11) is eero except for odd 

integral n. Thus phase modulation of the double rf system gives rise to only odd order 

ezcitations, similar to that of the single rf system. For small amplitude oscillations in the 

single rfsystem, the dominant resonance driving term is the first harmonic [13]. On the other 

hand, the resonance driving strengths for the double rf system are given by ]gr] x 0.790J*/3, 

]g31 x 0.107Js~3 and ]gs] = 0.0077J’/3 etc., or generally ]gs,,+r] Y 0.8 x (2n + 1)~“*Js/s, so 

the resonance strength is distributed over many harmonics. 

Once the g,, coefficients are obtained, the Hamiltonian of Eq. (7) becomes, 

H = E(J) + v,a c Isn(J - vd + 74 + COS(+ + v,B + 74, (4) 
n=odd 

where 7,, is the phase of the Fourier amplitude g,,. For a << 1, we have 4 z Q, and 

the resonance (stationary phase) condition occurs when the modulation tune equals an 

odd integral multiple of the synchrotron tune. In a single resonance dominated regime, we 

transform the coordinates into the resonance rotating frame by using the generating function 

Fs($,I) = (4 - :‘e + %)I. The new conjugate action-angle variables (1,x) are given by 

I=J, x=+-Fe+ %, and the new Hamiltonian becomes, 

H = E(I) - :I + vmalg,,(l)l cos(nx) + AH(I,x, 0). (5) 
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Neglecting the time dependent perturbation with (AH(I, x, 0)) = 0, the stable and unstable 

fixed points (SFPs and UFPs) are given by, 

sinnxrp = 0, nQ.(&) - v, f w&~(&.)l = 0, (6) 

and the Poincari surfaces of section around SFPs are composed of n islands. The width 
w 

of a resonance island is approximately given by AI N 4 w _ [ 1 . When the resonance C-I I-&p 
action is near Ids N 1 rads, where the detuning parameter I%1 is small, the island width 

becomes large. 

We now discuss the bifurcation of fixed points for the Hamiltonian of Eq. (7). The 

invariant tori for the Hamiltonian can be obtained by numerically integrating Hamilton’s 

equations of motion, and by taking the Poincark surfaces of section. Figure 3 shows examples 

of these Poincare surfaces of section with V, = 0.0008, V, = 0.5~. and a = 2.5”. A first 

order single resonance island at V, = Q.(I) is shown in Fig. 3a, which also exhibits a chaotic 

region near the origin. A close up of the chaotic region is shown in Fig. 3b, where n = 5 

and 3 resonances are closest to the origin and higher order resonance islands occurring in 

the order of i, %, t, i, remain intact among the sea of the stochastic region. Here, the t 

(or 4:2) resonance arises from second order perturbation by combining the n = 1 (1:l) and 

n = 3 (3:l) harmonics; the i resonance arises from third order perturbation by combining 

I:1 and 4:2 resonances, etc. The sea of stochasticity arises from overlapping separatrices 

of these high order resonances. The occurrence of these resonances can be understood 

by drawing a horizontal line at v,,, = 0.5~. in Fig. 2, which will cut through resonance 

curves Q,(Z), iQ,(I), iQ,(I), %Q,(I), iQ,(I), 3Q,(Z), . . . . At a modulation amplitude a < 

0.5”, higher order resonances become invisible, while the n = 1,3,5,. . . resonances remain 

important. 

Since the synchrotron tune peaks at & , z 0.9177v. and vanishes at both large and small 

actions or energies, the resonance condition of Eq. (15) f or a given order n will occur twice 

until the modulation tune reaches the peak synchrotron tune Q,. Therefore when V, is 

increased toward Q., the SFP and the UFP associated with the outer amplitude and the 

6 



SFP and the UFP associated with the inner amplitude approach each other. The inner 

SFP and the outer UFP form a bifurcation branch around V, = 4,. Similarly, the inner 

UFP and the outer SFP form another bifurcation branch. When the modulation tune is 

increased beyond the first order resonance, higher order resonances bifurcate in a similar 

fashion. This tree of bifurcation continues until the driving amplitude gn becomes too small 

to be detected. 

Figure 4 shows a compilation of experimental data for the bifurcation process for the 

single rf system subject to phase modulation [13], where the phase modulation amplitudes 

were a = 0.57”, 1.14”,2.29” and 3.36” respectively for the first harmonic and a = 6’ for the 

third harmonic. There was no visible second harmonic excitation due to phase modulation. 

Note here that the UFP bifurcates with the inner SFP in this single rf system. 

For the double rf system, the SFPs of resonance islands can be obtained from numerical 

tracking simulations as a function of the modulation tune (see Fig. 3). The square symbols of 

Fig. 5 shows the modulation tune vs the energy for SFPs obtained numerically with a = 1”. 

The harmonics of the synchrotron tune, Q,(E) and 3Q,(E) are shown as solid lines. We thus 

observe that the bifurcation point occurs when the modulation frequency reaches the flat top 

of the synchrotron frequency. When the modulation amplitude is increased, the branches of 

SFPs associated with the inner and outer amplitudes will deviate further apart from each 

other. The bifurcation occurs when the inner SFPs coincide with the outer UFPs and vice 

versa. 

In conclusion, we have developed a semi-analytic method for analyzing the paramet- 

ric resonance of an autonomous nonlinear oscillator perturbed by a time dependent phase 

modulation. We found that odd order synchrotron modes are important to the double rf 

system subjected to sinusoidal phase modulation. On the other hand, when the rf voltage is 

subjected to external sinusoidal amplitude modulation, only even order synchrotron modes 

are excited. Thus the coherent beam instability observed in CERN boosters arose mainly 

from a perturbation similar to rf phase modulation. This correlation indicates that the na- 

ture of the coherent instability may be intimately related to resonances in the Hamiltonian 



dynamics. 

We have also shown that the tree of bifurcation branches for the SFPs and UFPs has the 

characteristic tune of the Hamiltonian system. When the phase modulation amplitude is 

larger than 2”, the double rf system exhibits stochasticity near the origin of the phase space at 

small modulation tunes (see Fig.3). The chaos arises from overlapping high order resonances, 

which become less important at higher modulation tunes due to a smaller resonance driving 

strength g,,. The chaos at large J near the rf bucket boundary also arises from overlapping 

high order resonances, which occur in both the single rf and the double rf systems. 

Although there are many intrinsic synchrotron mode instabilities in the double rf system, 

a feedback correction method was successfully applied for the CERN booster synchrotrons. 

In one of our experiments at the IUCF cooler ring, we found that the beam intensity was 

increased by a factor of 4 when the double rf system was used. Does the phase space 

damping mechanism in electron or stochastic cooling suppress these parametric resonances? 

What is the relation between the minimum damping rate for resonance suppression and the 

resonance driving amplitude a? Further theoretical and experimental studies on the nature 

of instabilities and their correction will be valuable for this interesting dynamical system. 
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FIGURES 

FIG. 1. The synchrotron tune v and its rational harmonics w, 9, v, v, 

3*, for T = 1, h = 3 are shown as a function of action. Note here that the synchrotron tune 

vanishes at both ends of the action variable and peaks at J = 1 rads. At low modulation tune, 

overlapping resonances are responsible for stochasticity at the small and large actions of the phase 

space. 

FIG. 2. Poincare surfaces of section at v, = 0.0006, v, = 0.5~. and a = 2.5” obtained numer- 

ically are shown in the upper figure. The lower part of the figure shows the close up look of the 

phase space map near the origin. Note here that 3Q., 5Q. resonances are located near the origin. 

A weaker series of resonances shown in (b) are found to bifurcate at is., SQ., $Q., @, etc. 

Due to the symmetry of the Hamiltonian system, the PoincarC surfaces of section for invariant tori 

should be reflectively symmetric with respect to the 6 axis. The resonance islands of the orders : 

and f are shown intentionalIy with two sets of invariant tori to distinguish themselves from the 

6th and the 4th order resonances. 

FIG. 3. The SFPs observed in a single rf system with rf phase modulation [13] as a function of 

the maximum phase amplitude $J are compared with the synchrotron tune of the single rf system. 

Note here that the inner SFP bifurcates with the UFP, around the maximum of the synchrotron 

tune. The sidebands around v, = v, arose from the 60 Hz power supply ripple. 

FIG. 4. The “energies” of the stable fixed points (square symbols) obtained from PoincarC 

surfaces of section for various modulation tunes v, at the modulation amplitude of a = I”, are 

compared with odd harmonics of the synchrotron tune. Note here that the bifurcation of resonance 

Sxed points occurs at the maximum value of the synchrotron tune. The nature of the response 

differs greatly from that of the single rf system. 
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